Course Content
Surface area and Volume of 2D-3D shapes
0/1
MYP3 Mathematics
About Lesson

                    Best IB MYP & IB DP Tuition | Math & Science Online and Home Tutoring       

                              Questions

                                   Criterion A and C

 

QUESTION 1: 

Best IB MYP & IB DP Tuition | Math & Science Online and Home Tutoring

Question 2: 


Type 1: Find the Surface Area

Q1. Apply the formula for the total surface area to find the total surface area of a cylindrical water tank with a radius of 6 m and a height of 12 m.

Q2. Calculate the curved surface area of a metal pipe with a diameter of 10 cm and a height of 15 cm. Use π = 3.14.


Type 2: Find the Radius

Q3. Determine the base radius of a solid cylinder if its curved surface area is 314 m² and its height is 10 m.

Q4. Justify your answer by calculating the radius of a hollow cylindrical pipe if its outer curved surface area is 500 cm², the height is 25 cm, and π = 3.14.


Type 3: Find the Height

Q5. Calculate the height of a cylindrical container if its curved surface area is 660 cm² and its radius is 7 cm.

Q6. Determine the height of a cylindrical tower if its total surface area is 904 m² and its radius is 8 m.

Q7. Solve for the height of a hollow pipe if its outer curved surface area is 1200 cm², the outer radius is 10 cm, and π = 3.14.


 

 

                                    Answers

Question 1: 

a ≈ 352 cm²
b ≈ 341 cm²
c ≈ 44.9 cm²
d ≈ 100 m²
e ≈ 820 cm²
f ≈ 292 m²

 

 


 

 

Question 2 :

Q1: Total Surface Area of a Cylindrical Water Tank

Given:

  • Radius, r=6r = 6 m
  • Height, h=12h = 12 m

Formula for TSA:

TSA=2πr(h+r)

Substituting values:

TSA=2×3.14×6×(12+6)

2×3.14×6×18

678.24 

Final Answer: 678.24 m²


Q2: Curved Surface Area of a Metal Pipe

Given:

  • Diameter = 10 cm → Radius = 5 cm
  • Height = 15 cm

Formula for CSA:

CSA=2πrh

CSA=2×3.14×5×15

471 

Final Answer: 471 cm²


Q3: Finding the Radius of a Solid Cylinder

Given:

  • CSA = 314 m²
  • Height, h=10h = 10 m

Formula:

CSA=2πrh

r=CSA / 2πhr 

Substituting values:

r=5

Final Answer: 5 m


Q4: Finding the Radius of a Hollow Cylinder

Given:

  • Outer CSA = 500 cm²
  • Height, h=25

Formula:

CSA=2πRh

 

R=CSA/2πh

Substituting values:

R=3.18 

Final Answer: 3.18 cm


Q5: Finding the Height of a Cylindrical Container

Given:

  • CSA = 660 cm²
  • Radius, r=7r = 7 cm

Formula:

CSA=2πrh

Rearrange to find hh:

h=CSA/2πrh 

Substituting values:

h=660 / 2×3.14×7

h=15 cm

Final Answer: 15 cm


Q6: Finding the Height of a Cylindrical Tower

Given:

  • TSA = 904 m²
  • Radius, r=8

Formula:

TSA=2πr(h+r)

h = 10m

Final Answer: 10 m


Q7: Finding the Height of a Hollow Pipe

Given:

  • Outer CSA = 1200 cm²
  • Outer Radius, R=10

CSA=2πRh

 

h=CSA / 2πR

Substituting values:

h= 19.11 cm

Final Answer: 19.11 cm